Wirewound Pulse & Overload Application Note

Resistors

BI Technologies IRC Welwyn
Modern electronic circuits and devices are more sensitive than ever to transients, and this has led to an increased need for transient protection. Designers are often faced with a difficult task in terms of the level of protection required and the ability of the individual components to withstand given transients or pulses. Whilst there is a great deal of information available on the capability of semiconductors, other components, such as resistors, are often neglected or misunderstood by designers.

As resistors are often located in areas likely to experience transients, with power supplies or lighting circuits for example, their transient or pulse capability is a critical issue.

The most common type of resistors used for transient protection are wirewound resistors. However, this is a product range for which pulse capability data is not often given on data sheets. The following pages detail the pulse handling and overload characteristics of TT Electronics’ most popular wirewound resistors.

In addition to providing a comprehensive range of standard wirewound resistors, TT Electronics has worked closely with designers to custom build resistors for specific protection applications.

- Data given for Metal Clad, axial Cement and Vitreous Enamelled wirewounds
- Detailed pulse graphs
- Custom parts available

For our full product portfolio, in-house & local design support / distribution partners, visit: www.ttelectronics.com/resistors
Overloading of Wirewound Resistors

In order to limit their temperature rise, wirewound resistors have maximum continuous power ratings. However, they also have an overload rating, often referred to as Short Term Overload on data sheets. This varies according to the product type and is specified as a multiple of the rated power applied for a specified time. The overload ratings for the most popular axial wirewound resistors are given below:

<table>
<thead>
<tr>
<th>Type:</th>
<th>Overload: (Multiple of rated power)</th>
<th>Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>W20 Series</td>
<td>10</td>
<td>5 Seconds</td>
</tr>
<tr>
<td>WH Series</td>
<td>5</td>
<td>5 Seconds</td>
</tr>
<tr>
<td>WA80 and WP-S Series</td>
<td>5</td>
<td>5 Seconds</td>
</tr>
<tr>
<td>W31</td>
<td>10</td>
<td>5 Seconds</td>
</tr>
</tbody>
</table>

For example, the W22 is rated as a 6 watt device, however it is capable of dissipating 60 watts for 5 seconds. In terms of energy, this corresponds to 300 joules.

It might be thought that this device is capable of handling 300 joules irrespective of the pulse width. However, because it takes a finite time for the heat produced to be properly distributed throughout the resistor body, it is necessary to impose limits on the applied pulse energy so as to prevent excessive stresses due to thermal shock damaging the component.

For example, if we consider a W22-R22 subjected to 200 Volts for 1.5 milliseconds.

Using $E = \frac{V^2}{R}$, the energy is 270 joules.

This is within the 300 joules quoted above, but because it would take longer than 1.5 ms for the heat produced in the wire to flow into the surrounding materials, the temperature of the wire would rise far beyond that intended.

If the wire is subjected to temperatures beyond its operating limits, the resistance value of the component may change excessively, the coating can be damaged, and in extreme cases the wire can melt.

For these reasons we have produced the “Energy Capability” and “Overload Rating” graphs which should be referred to for all pulse applications. (The term pulse implies a single pulse applied to a resistor, which is not already dissipating power and is in an ambient temperature of 70°C or less.)

For pulses of up to 100ms duration, the “Energy Capability” graph should be used. For longer pulses (>100ms) the “Overload Rating” graph should be used. However, the energy applied in the first 100ms should not exceed that allowed on the “Energy Capability” Graph. For very short pulses, <1ms, reference should be made to the 1.2/50µs table. “Overload Rating” graphs are not provided for the WA80 and W31 Series; for these products the table above should be used.

It is important to realise that forced air-cooling and/or heat sinks have no effect on overload ratings within the first few seconds.
Resistors

Application Note

Repetitive or Superimposed Pulses

As there is a maximum temperature to which the wire can rise during an overload, if the resistor is already dissipating heat, then the pulse energy applied should be less than that allowed by the graph.

Using the formula below we can estimate the “equivalent” energy of a pulse applied to a resistor that is already dissipating power.

It should also be noted that for repetitive pulses the average power dissipated must not exceed the continuous power rating of the resistor.

\[E_{ap} = E \times (1 + \frac{P_{av}}{P_r}) \]

Where:
\[E = \text{Equivalent pulse energy} \]
\[E = \text{Actual pulse energy} \]
\[P_r = \text{Resistor power rating} \]
\[P_{av} = \text{Mean power being dissipated} \]

Example

A W21 resistor with a 3W rating experiences repetitive pulses with an energy per pulse of 1.5J and one pulse every 750ms giving a mean power of 2W.

The equivalent energy is therefore

\[E_{ap} = 1.5J \times (1 + \frac{2W}{3W}) = 2.5J \]

So the W21 must have a pulse capacity of at least 2.5J. Referring to the graph on Page 4, this condition is met for values below about 47Ω.

For a calculation tool to assist in evaluating single and repetitive (or continuous) pulses, go to http://www.ttelectronics.com/resistors and, under the Tools tab, select Pulse Calculator.

Limiting Element Voltage (L.E.V)

The L.E.V is the maximum continuous voltage that can be applied to a resistor.

Generally for lower values the power rating is exceeded before the L.E.V is reached. With higher values the L.E.V imposes limitations on the applied power.

Graphs

The following pages contain the “Energy Capability” and “Overload Rating” graphs described above for the most popular types of wirewound resistor. Information is also available on request for tubular resistors and other wirewound products. In addition to this, TT Electronics is able to offer custom design parts to meet specific customer requirements.
Resistors

W20 Series "Energy Capability" Graph

Energy (Joules)

Value (Ohms)

W20 Series "Overload Rating" Graph

Multiple of Rated Power

Overload Duration (Seconds)

WA80 & WP-S Series "Energy Capability" Graph

Energy (Joules)

Value (Ohms)

Based on a wire temperature rise of 750°C

Based on a wire temperature rise of 750°C
Resistors

W31 Series “Energy Capability” Graph

Based on a wire temperature rise of 750°C

WH Series “Energy Capability” Graph

Based on a wire temperature rise of 750°C

WH Series “Overload Rating” Graph

Based on a wire temperature rise of 750°C
1.2/50µs Voltage Capacity

The graphs below give the maximum voltage that may be applied in the form of a 1.2/50µs pulse as defined in IEC 61000-4-5 and ANSI C62.41. This has a 1.2µs risetime and decays exponentially with a 50% amplitude pulse width of 50µs. The maximum permitted resistance change is 2%. Voltages above 6kV have not been tested, although parts can be tested up to 12kV on request.

Customisation

The pulse performance of a wirewound resistor is very dependent on the wire alloy and diameter used to wind the resistive element. Where enhanced performance is required, it is possible to create customised, pulse withstanding versions of the standard products listed here. Typical performance gains achievable are increases in energy capacity by a factor of two or three. Please contact our Applications Engineering team to discuss your high energy pulse requirements.

WHS Series Wirewound High Surge Resistors

For an off-the-shelf, pulse optimised wirewound product, the WHS series is now available in a range of ratings from 2W to 10W. Full overload and pulse data for this product is given on the data sheet http://www.ttelectronics.com/sites/default/files/resistors-datasheets/WHS.pdf and flameproof cement coating makes this an ideal choice for compact power supply designs.