PRODUCT DESCRIPTION

The Dimension CP-Series are cost optimized power supplies without compromising quality, reliability and performance. The CP-Series is part of the DIMENSION power supply family.

The most outstanding features of this unit is the small size, the high efficiency, the electronic inrush current limitation, active PFC and the wide operational temperature range. The device has a power reserve of 20% included, which may even be used continuously at temperatures up to +45°C. Additionally, it can deliver 3 times the nominal output current for 12ms which helps to trip fuses on faulty output branches.

High immunity to transients and power surges as well as low electromagnetic emission, a DC-OK signal contact for remote monitoring, and a large international approval package for a variety of applications makes this unit suitable for nearly every situation.

SHORT-FORM DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage DC</td>
<td>12V</td>
</tr>
<tr>
<td>Adjustment range</td>
<td>12 - 15V</td>
</tr>
<tr>
<td>Output current</td>
<td>12.0 - 9.6A</td>
</tr>
<tr>
<td></td>
<td>10.0 - 8.0A</td>
</tr>
<tr>
<td></td>
<td>7.5 - 6.0A</td>
</tr>
<tr>
<td>Input AC voltage</td>
<td>AC 100-240V</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>50-60Hz</td>
</tr>
<tr>
<td>Input current AC</td>
<td>1.09 / 0.6A</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.98 / 0.91</td>
</tr>
<tr>
<td>Input voltage DC</td>
<td>DC 110-150V</td>
</tr>
<tr>
<td>Input current DC</td>
<td>1.21A</td>
</tr>
<tr>
<td>AC Inrush current</td>
<td>4 / 4A</td>
</tr>
<tr>
<td>Efficiency</td>
<td>93.2 / 94.0%</td>
</tr>
<tr>
<td>Losses</td>
<td>8.8 / 7.7W</td>
</tr>
<tr>
<td>Hold-up time</td>
<td>35 / 35ms</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-25°C to +70°C</td>
</tr>
<tr>
<td>Size (WxHxD)</td>
<td>32x124x102mm</td>
</tr>
<tr>
<td>Weight</td>
<td>440g / 0.97lb</td>
</tr>
</tbody>
</table>

ORDER NUMBERS

- Power Supply: **CP5.121**
- Mechanical Accessory: **ZM10.WALL**

MAIN APPROVALS

For details and a complete approval list see chapter 19.

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN
All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
The information given in this document is correct to the best of our knowledge and experience at the time of publication. If not expressly agreed otherwise, this information does not represent a warranty in the legal sense of the word. As the state of our knowledge and experience is constantly changing, the information in this data sheet is subject to revision. We therefore kindly ask you to always use the latest issue of this document (available under www.pulspower.com).

No part of this document may be reproduced or utilized in any form without our prior permission in writing. Packaging and packaging aids can and should always be recycled. The product itself may not be disposed of as domestic refuse.

TERMINOLOGY AND ABBREVIATIONS

PE and ☼ symbol
PE is the abbreviation for Protective Earth and has the same meaning as the symbol ☼.

Earth, Ground
This document uses the term “earth” which is the same as the U.S. term “ground”.

T.b.d.
To be defined, value or description will follow later.

AC 230V
A figure displayed with the AC or DC before the value represents a nominal voltage with standard tolerances (usually ±15%) included. E.g.: DC 12V describes a 12V battery disregarding whether it is full (13.7V) or flat (10V)

230Vac
A figure with the unit (Vac) at the end is a momentary figure without any additional tolerances included.

50Hz vs. 60Hz
As long as not otherwise stated, AC 230V parameters are valid at 50Hz mains frequency.

may
A key word indicating flexibility of choice with no implied preference.

shall
A key word indicating a mandatory requirement.

should
A key word indicating flexibility of choice with a strongly preferred implementation.
1. INTENDED USE

This device is designed for installation in an enclosure and is intended for commercial use, such as in industrial control, process control, monitoring and measurement equipment or the like.

Do not use this device in equipment where malfunction may cause severe personal injury or threaten human life.

If this device is used in a manner outside of its specification, the protection provided by the device may be impaired.

2. INSTALLATION INSTRUCTIONS

WARNING Risk of electrical shock, fire, personal injury or death.

- Turn power off before working on the device. Protect against inadvertent re-powering.
- Do not modify or repair the unit.
- Do not open the unit as high voltages are present inside.
- Use caution to prevent any foreign objects from entering the housing.
- Do not use in wet locations or in areas where moisture or condensation can be expected.
- Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

Obey the following installation instructions:

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. The tripping of an internal fuse is caused by an internal defect.

If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.

Install the device onto a DIN-rail according to EN 60715 with the input terminals on the bottom of the device. Other mounting orientations require a reduction in output current.

Make sure that the wiring is correct by following all local and national codes. Use appropriate copper cables that are designed for a minimum operating temperature of 60°C for ambient temperatures up to +45°C, 75°C for ambient temperatures up to +60°C and 90°C for ambient temperatures up to +70°C. Ensure that all strands of a stranded wire enter the terminal connection. Use ferrules for wires on the input terminals. Unused screw terminals should be securely tightened.

The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed.

The enclosure of the device provides a degree of protection of IP20.

The isolation of the device is designed to withstand impulse voltages of overvoltage category III according to IEC 60664-1.

The device is designed as “Class of Protection I” equipment according to IEC 61140. Do not use without a proper PE (Protective Earth) connection.

The device is suitable to be supplied from TN, TT or IT mains networks. The continuous voltage between the input terminal and the PE potential must not exceed 300Vac.

The input can also be powered from batteries or similar DC sources. The continuous voltage between the supply voltage and the PE/ground potential must not exceed 360Vdc.

A disconnecting means shall be provided for the input of the device.

The device is designed for convection cooling and does not require an external fan. Do not obstruct airflow and do not cover ventilation grid!

The device is designed for altitudes up to 5000m (16400ft). Above 2000m (6560ft) a reduction in output current and over voltage category is required.
Keep the following minimum installation clearances: 40mm on top, 20mm on the bottom, 5mm left and right side. Increase the 5mm to 15mm in case the adjacent device is a heat source. When the device is permanently loaded with less than 50%, the 5mm can be reduced to zero.

The device is designed, tested and approved for branch circuits up to 32A (IEC) and 30A (UL) without additional protection device. If an external fuse is utilized, do not use circuit breakers smaller than 6A B- or C-Characteristic to avoid a nuisance tripping of the circuit breaker.

The maximum surrounding air temperature is +70°C (+158°F). The operational temperature is the same as the ambient or surrounding air temperature and is defined 2cm below the device.

The device is designed to operate in areas between 5% and 95% relative humidity.
3. AC-INPUT

The device is suitable to be supplied from TN, TT or IT mains networks with AC voltage. For suitable DC supply voltages see chapter 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nom.</th>
<th>Min.</th>
<th>Continuous operation</th>
<th>Max.</th>
<th>Occasionally for maximal 500ms</th>
<th>Continuous, according to IEC 606641</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input</td>
<td>AC 100-240V</td>
<td>85-264Vac</td>
<td></td>
<td>300Vac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC input range</td>
<td>264-300Vac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowed voltage L or N to earth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input frequency</td>
<td>50–60Hz</td>
<td></td>
<td>±6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>80Vac</td>
<td></td>
<td>Steady-state value, see Fig. 3-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shut-down voltage</td>
<td>74Vac</td>
<td></td>
<td>Steady-state value, see Fig. 3-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External input protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage Level</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input current</td>
<td>1.30A</td>
<td>1.09A</td>
<td>0.60A</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.99</td>
<td>0.98</td>
<td>0.91</td>
</tr>
<tr>
<td>Crest factor</td>
<td>1.7</td>
<td>1.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- Input current: Typ. 1.30A, 1.09A, 0.60A At 12V, 10A, see Fig. 3-3
- Power factor: Typ. 0.99, 0.98, 0.91 At 12V, 10A, see Fig. 3-4
- Crest factor: Typ. 1.7, 1.8, 2.2 At 12V, 10A The crest factor is the mathematical ratio of the peak value to RMS value of the input current waveform.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Continuous operation</th>
<th>Max.</th>
<th>Occasionally for maximal 500ms</th>
<th>Continuous, according to IEC 606641</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up delay</td>
<td>400ms</td>
<td></td>
<td>375ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time</td>
<td>30ms</td>
<td></td>
<td>30ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50ms</td>
<td></td>
<td>50ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start-up delay: Typ. 400ms, 350ms, 375ms At 12V, 10A, see Fig. 3-2
- Rise time: Typ. 30ms, 30ms, 30ms At 12V, 10A constant current load, 0mF load capacitance, see Fig. 3-3
- Start-up delay: Typ. 50ms, 50ms, 50ms At 12V, 10A constant current load, 10mF load capacitance, see Fig. 3-3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Continuous operation</th>
<th>Max.</th>
<th>Occasionally for maximal 500ms</th>
<th>Continuous, according to IEC 606641</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on overshoot</td>
<td>200mV</td>
<td></td>
<td>200mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Turn-on overshoot: Max. 200mV, 200mV, 200mV At 12V, 10A, see Fig. 3-2
4. DC-INPUT

The device is suitable to be supplied from a DC input voltage. Use a battery or a similar DC source. A supply from the intermediate DC-bus of a frequency converter is not recommended and can cause a malfunction or damage the unit. Connect +pole to L, –pole to N and the PE terminal to an earth wire or to the machine ground.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nom. DC 110-150V</th>
<th>±20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC input range</td>
<td>Min. 88-180Vdc</td>
<td></td>
</tr>
<tr>
<td>DC input current</td>
<td>Typ. 1.21A</td>
<td></td>
</tr>
<tr>
<td>Allowed Voltage (+) or (-) input to Earth</td>
<td>Max. 180Vdc</td>
<td></td>
</tr>
</tbody>
</table>

Turn-on voltage

<table>
<thead>
<tr>
<th>Voltage Type</th>
<th>Nominal Voltage</th>
<th>Steady State Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ.</td>
<td>74Vdc</td>
<td>Steady state value</td>
</tr>
<tr>
<td>Typ.</td>
<td>67Vdc</td>
<td>Steady state value</td>
</tr>
</tbody>
</table>

Fig. 4-1 Wiring for DC Input

![Wiring for DC Input Diagram]

5. INPUT INRUSH CURRENT

An active inrush limitation circuit (NTCs, which are bypassed by a relay contact) limits the input inrush current after turn-on of the input voltage.

The charging current into EMI suppression capacitors is disregarded in the first microseconds after switch-on.

<table>
<thead>
<tr>
<th>AC Voltage</th>
<th>Inrush Current</th>
<th>Inrush Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 100V</td>
<td>Max. 8Apeak</td>
<td>0.4A²s</td>
</tr>
<tr>
<td></td>
<td>Typ. 5Apeak</td>
<td>0.5A²s</td>
</tr>
<tr>
<td>AC 120V</td>
<td>Max. 7Apeak</td>
<td>0.5A²s</td>
</tr>
<tr>
<td></td>
<td>Typ. 5Apeak</td>
<td>0.5A²s</td>
</tr>
<tr>
<td>AC 230V</td>
<td>Max. 7Apeak</td>
<td>1A²s</td>
</tr>
<tr>
<td></td>
<td>Typ. 6Apeak</td>
<td>1A²s</td>
</tr>
</tbody>
</table>

Fig. 5-1 Typical turn-on behaviour at nominal load, 120Vac input and 25°C ambient

![Typical turn-on behaviour at nominal load, 120Vac input and 25°C ambient]

Fig. 5-2 Typical turn-on behaviour at nominal load, 230Vac input and 25°C ambient

![Typical turn-on behaviour at nominal load, 230Vac input and 25°C ambient]

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
6. Output

The output provides a SELV/PELV rated voltage, which is galvanically isolated from the input voltage.

The device is designed to supply any kind of loads, including capacitive and inductive loads. If extreme large capacitors, such as EDLCs (electric double layer capacitors or “UltraCaps”) with a capacitance > 0.3F are connected to the output, the unit might charge the capacitor in an intermittent mode.

The output is electronically protected against overload, no-load and short-circuits. In case of a protection event, audible noise may occur.

Output voltage

<table>
<thead>
<tr>
<th>Nom.</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment range</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>12-15V</td>
</tr>
<tr>
<td>Max.</td>
<td>16.0V</td>
</tr>
</tbody>
</table>

Guaranteed value

This is the maximum output voltage which can occur at the clockwise end position of the potentiometer due to tolerances. It is not a guaranteed value which can be achieved.

Factory settings

<table>
<thead>
<tr>
<th>Typ.</th>
<th>12.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line regulation</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>10mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>50mV</td>
</tr>
<tr>
<td>Ripple and noise voltage</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>50mVpp</td>
</tr>
<tr>
<td>Max.</td>
<td>200mVpp</td>
</tr>
<tr>
<td>Load >0.3A, Bandwidth 20Hz to 20MHz, 50Ohm</td>
<td></td>
</tr>
<tr>
<td>Load <0.3A, Bandwidth 20Hz to 20MHz, 50Ohm</td>
<td></td>
</tr>
</tbody>
</table>

Output current

<table>
<thead>
<tr>
<th>Nom.</th>
<th>12A(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom.</td>
<td>10A</td>
</tr>
<tr>
<td>Nom.</td>
<td>7.5A</td>
</tr>
<tr>
<td>Nom.</td>
<td>9.6A(1)</td>
</tr>
<tr>
<td>Nom.</td>
<td>8.0A</td>
</tr>
<tr>
<td>Nom.</td>
<td>6.0A</td>
</tr>
</tbody>
</table>

At 12V and an ambient temperatures below 45°C

At 12V and 60°C ambient temperature

At 12V and 70°C ambient temperature

At 15V and an ambient temperatures below 45°C

At 15V and 60°C ambient temperature

At 15V and 70°C ambient temperature

Derate linearely between +45°C and +70°

Fuse breaking current

<table>
<thead>
<tr>
<th>Typ.</th>
<th>30A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage > 7Vdc, see Fig. 6-1</td>
<td></td>
</tr>
<tr>
<td>Output voltage < 6Vdc, see Fig. 6-1</td>
<td></td>
</tr>
</tbody>
</table>

Up to 12ms once every five seconds, see Fig. 6-2. The fuse braking current is an enhanced transient current which helps to trip fuses on faulty output branches. The output voltage stays above 10V.

Overload behaviour

Continuous current

Intermittent current(2)

Output voltage > 7Vdc, see Fig. 6-1

Output voltage < 6Vdc, see Fig. 6-1

Overload/ short-circuit current

Max.	14.2A
Typ.	15A
Max.	5A

Continuous current, see Fig. 6-1

Intermittent current peak value for typ. 1s

Load impedance 50mOhm, see Fig. 6-3

Discharge current of output capacitors is not included.

Intermittent current average value (R.M.S.)

Load impedance 50mOhm, see Fig. 6-3

Output capacitance

<table>
<thead>
<tr>
<th>Typ.</th>
<th>2 700μF</th>
</tr>
</thead>
</table>

Included inside the power supply

Back-feeding loads

<table>
<thead>
<tr>
<th>Max.</th>
<th>25V</th>
</tr>
</thead>
</table>

The unit is resistant and does not show malfunctioning when a load feeds back voltage to the power supply. It does not matter whether the power supply is on or off. The absorbing energy can be calculated according to the built-in large sized output capacitor.

1) This current is also available for temperatures up to +70°C with a duty cycle of 10% and/ or not longer than 1 minute every 10 minutes.

2) At heavy overloads (when output voltage falls below 7V), the power supply delivers continuous output current for 1s. After this, the output is switched off for approx. 9s before a new start attempt is automatically performed. This cycle is repeated as long as the overload exists. If the overload has been cleared, the device will operate normally. See Fig. 6-3.
Fig. 6-1 Output voltage vs. output current, typ.

Fig. 6-2 Dynamic output current capability, typ.

Fig. 6-3 Short-circuit on output, Hiccup^{PLUS} mode, typ.
7. Hold-up Time

The hold-up time is the time during which a power supply's output voltage remains within specification following the loss of input power. The hold-up time is output load dependent. At no load, the hold-up time can be up to several seconds. The green DC-ok lamp is also on during this time.

<table>
<thead>
<tr>
<th>Hold-up Time</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ.</td>
<td>70ms</td>
<td>70ms</td>
<td>70ms</td>
</tr>
<tr>
<td>Min.</td>
<td>55ms</td>
<td>55ms</td>
<td>55ms</td>
</tr>
<tr>
<td>Typ.</td>
<td>35ms</td>
<td>35ms</td>
<td>35ms</td>
</tr>
<tr>
<td>Min.</td>
<td>27ms</td>
<td>27ms</td>
<td>27ms</td>
</tr>
</tbody>
</table>

Fig. 7-1 Hold-up time vs. input voltage

Fig. 7-2 Shut-down behavior, definitions

8. DC-OK Relay Contact

This feature monitors the output voltage on the output terminals of a running power supply.

- **Contact closes**: As soon as the output voltage reaches typ. 90% of the adjusted output voltage level.
- **Contact opens**: As soon as the output voltage dips more than 10% below the adjusted output voltage. Short dips will be extended to a signal length of 100ms. Dips shorter than 1ms will be ignored.
- **Switching hysteresis**: Typically 0.4V
- **Contact ratings**: Maximal 60Vdc 0.3A, 30Vdc 1A, 30Vac 0.5A, resistive load. Minimal permissible load: 1mA at 5Vdc
- **Isolation voltage**: See dielectric strength table in section 18.

Fig. 8-1 DC-ok relay contact behavior

Jul. 2019 / Rev. 1.0 DS-CPS.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
9. Efficiency and Power Losses

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>AC 100V Typ.</th>
<th>AC 120V Typ.</th>
<th>AC 230V At 12V, 10A (Power Boost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>92.6%</td>
<td>93.2%</td>
<td>94.0%</td>
</tr>
<tr>
<td>Typical</td>
<td>92.2%</td>
<td>92.9%</td>
<td>93.8%</td>
</tr>
<tr>
<td>Average efficiency</td>
<td>91.6%</td>
<td>92.0%</td>
<td>92.3%</td>
</tr>
<tr>
<td>Typical</td>
<td>92.2%</td>
<td>92.9%</td>
<td>93.8%</td>
</tr>
<tr>
<td>Total efficiency</td>
<td>91.6%</td>
<td>92.0%</td>
<td>92.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power losses</th>
<th>AC 100V Typ.</th>
<th>AC 120V Typ.</th>
<th>AC 230V At 12V, 0A (Power Boost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>0.9W</td>
<td>0.9W</td>
<td>1.0W</td>
</tr>
<tr>
<td>Typical</td>
<td>4.9W</td>
<td>4.7W</td>
<td>4.6W</td>
</tr>
<tr>
<td>Typical</td>
<td>9.6W</td>
<td>8.8W</td>
<td>7.7W</td>
</tr>
<tr>
<td>Typical</td>
<td>12.2W</td>
<td>11.0W</td>
<td>9.5W</td>
</tr>
</tbody>
</table>

*1) The average efficiency is an assumption for a typical application where the power supply is loaded with 25% of the nominal load for 25% of the time, 50% of the nominal load for another 25% of the time, 75% of the nominal load for another 25% of the time and with 100% of the nominal load for the rest of the time.

Fig. 9-1 Efficiency vs. output current at 12V, typ.

Fig. 9-2 Losses vs. output current at 12V, typ.

Fig. 9-3 Efficiency vs. input voltage at 12V, 10A, typ.

Fig. 9-4 Losses vs. input voltage at 12V, 10A, typ.

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
10. FUNCTIONAL DIAGRAM

Fig. 10-1 Functional diagram

- Input Fuse
- Input Rectifier
- Inrush Current Limiter
- PFC Converter
- Power Converter
- Output Filter
- Temperature Shutdown
- Output Power Manager
- Output Over Voltage Protection
- Output Voltage Monitor
- DC-ok Relay
- Output Voltage Regulator
- DC-ok LED
- DC-ok Contact
- V_{out}

11. FRONT SIDE AND USER ELEMENTS

Fig. 11-1 Front side

A Input Terminals
- N, L Line input
- PE (Protective Earth) input

B Output Terminals
- Two identical + poles and two identical - poles
- + Positive output
- - Negative (return) output

C Output Voltage Potentiometer

D DC-OK LED (green)
- On, when the output voltage is >90% of the adjusted output voltage

E DC-OK Relay Contact
- The DC-OK relay contact is synchronized with the DC-OK LED.
- See chapter 8 for details.
12. CONNECTION TERMINALS

The terminals are IP20 Finger safe constructed and suitable for field- and factory wiring.

<table>
<thead>
<tr>
<th>Type</th>
<th>Input</th>
<th>Output</th>
<th>DC-OK-Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screw termination</td>
<td>Screw termination</td>
<td>Push-in termination</td>
</tr>
<tr>
<td>Solid wire</td>
<td>Max. 6mm²</td>
<td>Max. 6mm²</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>Stranded wire</td>
<td>Max. 4mm²</td>
<td>Max. 4mm²</td>
<td>Max. 1.5mm²</td>
</tr>
<tr>
<td>American Wire Gauge</td>
<td>AWG 20-10</td>
<td>AWG 20-10</td>
<td>AWG 24-16</td>
</tr>
<tr>
<td>Max. wire diameter (including ferrules)</td>
<td>2.8mm</td>
<td>2.8mm</td>
<td>1.6mm</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>1Nm / 9lb-in</td>
<td>1Nm / 9lb-in</td>
<td>-</td>
</tr>
<tr>
<td>Wire stripping length</td>
<td>7mm / 0.28inch</td>
<td>7mm / 0.28inch</td>
<td>7mm / 0.28inch</td>
</tr>
<tr>
<td>Screwdriver</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3.5mm slotted or cross-head No 2</td>
<td>3mm slotted to open the spring</td>
</tr>
</tbody>
</table>

Daisy chaining:
Daisy chaining (jumping from one power supply output to the next) is allowed as long as the average output current through one terminal pin does not exceed 25A. If the current is higher, use a separate distribution terminal block as shown in Fig. 12-2.

![Fig. 12-1 Daisy chaining of outputs](image1)

![Fig. 12-2 Using distribution terminals](image2)
13. LIFETIME EXPECTANCY

The Lifetime expectancy shown in the table indicates the minimum operating hours (service life) and is determined by the lifetime expectancy of the built-in electrolytic capacitors. Lifetime expectancy is specified in operational hours and is calculated according to the capacitor’s manufacturer specification. The manufacturer of the electrolytic capacitors only guarantees a maximum life of up to 15 years (131 400h). Any number exceeding this value is a calculated theoretical lifetime which can be used to compare devices.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime expectancy</td>
<td>284 000h</td>
<td>297 000h</td>
<td>294 000h</td>
<td>At 12V, 5A and 40°C</td>
</tr>
<tr>
<td>804 000h</td>
<td>839 000h</td>
<td>833 000h</td>
<td>110 000h</td>
<td>At 12V, 10A and 40°C</td>
</tr>
<tr>
<td>88 000h</td>
<td>94 000h</td>
<td>311 000h</td>
<td>61 000h</td>
<td>At 12V, 10A and 25°C</td>
</tr>
<tr>
<td>248 000h</td>
<td>267 000h</td>
<td>51 000h</td>
<td>171 000h</td>
<td>At 12V, 12A and 40°C</td>
</tr>
<tr>
<td>44 000h</td>
<td>143 000h</td>
<td>126 000h</td>
<td></td>
<td>At 12V, 12A and 25°C</td>
</tr>
</tbody>
</table>

14. MTBF

MTBF stands for Mean Time Between Failure, which is calculated according to statistical device failures, and indicates reliability of a device. It is the statistical representation of the likelihood of a unit to fail and does not necessarily represent the life of a product.

The MTBF figure is a statistical representation of the likelihood of a device to fail. A MTBF figure of e.g. 1 000 000h means that statistically one unit will fail every 100 hours if 10 000 units are installed in the field. However, it can not be determined if the failed unit has been running for 50 000h or only for 100h.

For these types of units the MTTF (Mean Time To Failure) value is the same value as the MTBF value.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>AC 100V</th>
<th>AC 120V</th>
<th>AC 230V</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF SN 29500, IEC 61709</td>
<td>682 000h</td>
<td>687 000h</td>
<td>732 000h</td>
<td>At 12V, 10A and 40°C</td>
</tr>
<tr>
<td>1 212 000h</td>
<td>1 221 000h</td>
<td>1 294 000h</td>
<td>At 12V, 10A and 25°C</td>
<td></td>
</tr>
<tr>
<td>MTBF MIL HDBK 217F</td>
<td>287 000h</td>
<td>290 000h</td>
<td>308 000h</td>
<td>At 12V, 10A and 40°C; Ground Benign GB40</td>
</tr>
<tr>
<td>417 000h</td>
<td>421 000h</td>
<td>447 000h</td>
<td></td>
<td>At 12V, 10A and 25°C; Ground Benign GB25</td>
</tr>
<tr>
<td>68 000h</td>
<td>69 000h</td>
<td>73 000h</td>
<td></td>
<td>At 12V, 10A and 40°C; Ground Fixed GF40</td>
</tr>
<tr>
<td>91 000h</td>
<td>93 000h</td>
<td>99 000h</td>
<td></td>
<td>At 12V, 10A and 25°C; Ground Fixed GF25</td>
</tr>
</tbody>
</table>
15. EMC

The EMC behavior of the device is designed for applications in industrial environment as well as in residential, commercial and light industry environments.

The device is investigated according to EN 61000-6-1, EN 61000-6-2, EN 61000-6-3 and EN 61000-6-4.

EMC Immunity

Electrostatic discharge EN 61000-4-2 Contact discharge 8kV Criterion A
Air discharge 15kV Criterion A

Electromagnetic RF field EN 61000-4-3 80MHz-2.7GHz 20V/m Criterion A

Fast transients (Burst) EN 61000-4-4 Input lines 4kV Criterion A
Output lines 2kV Criterion A
DC-OK signal (coupling clamp) 2kV Criterion A

Surge voltage on input EN 61000-4-5 L → N 2kV Criterion A
L → PE, N → PE 4kV Criterion A

Surge voltage on output EN 61000-4-5 + → - 1kV Criterion A
+ / - → PE 2kV Criterion A

Surge voltage on DC-OK EN 61000-4-5 DC-OK signal → PE 1kV Criterion A

Conducted disturbance EN 61000-4-6 0.15-80MHz 20V Criterion A

Mains voltage dips EN 61000-4-11 0% of 100Vac 0Vac, 20ms Criterion A
40% of 100Vac 40Vac, 200ms Criterion C
70% of 100Vac 70Vac, 500ms Criterion A
0% of 200Vac 0Vac, 20ms Criterion A
40% of 200Vac 80Vac, 200ms <8A Criterion A
40% of 200Vac 80Vac, 200ms >8A Criterion C
70% of 200Vac 140Vac, 500ms Criterion A

Voltage interruptions EN 61000-4-11 0% of 200Vac (=0V) 5000ms Criterion C

Powerful transients VDE 0160 Over entire load range 750V, 0.3ms Criterion A

Performance criterions:
A: The device shows normal operation behavior within the defined limits.
C: Temporary loss of function is possible. The device may shut-down and restarts by itself. No damage or hazards for the device will occur.

EMC Emission

Conducted emission input lines EN 55011, EN 55022, FCC Part 15, CISPR 11, CISPR 22 Class B
Conducted emission output lines IEC/CISPR 16-1-2, IEC/CISPR 16-2-1 Limits for local DC power networks fulfilled

Radiated emission EN 55011, EN 55022 Class B

Harmonic input current (PFC) EN 61000-3-2 Fulfilled for Class A equipment

Voltage fluctuations, flicker EN 61000-3-3 Fulfilled, tested with constant current loads, non pulsing

This device complies with FCC Part 15 rules.
Operation is subjected to following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Switching Frequencies

PFC converter 30kHz to 140kHz Input voltage and output power dependent
Main converter 60kHz to 140kHz Output load dependent
Auxiliary converter 30kHz to 60kHz Output load dependent

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
16. ENVIRONMENT

Operational temperature
-25°C to +70°C (-13°F to 158°F)
Operational temperature is the same as the ambient or surrounding temperature and is defined as the air temperature 2cm below the unit.

Storage temperature
-40°C to +85°C (-40°F to 185°F)
For storage and transportation

Output de-rating
1.6W/°C
3W/°C
0.67A/1000m or 5°C/1000m
Between +45°C and +60°C (113°F to 140°F)
Between +60°C and +70°C (140°F to 158°F)
For altitudes >2000m (6560ft), see Fig. 16-2

The de-rating is not hardware controlled. The user has to take care by himself to stay below the de-rated current limits in order not to overload the unit.

Humidity
5 to 95% r.h.
According to IEC 60068-2-30

Atmospheric pressure
110-54kPa
See Fig. 16-2 for details

Altitude
Up to 5000m (16 400ft)
See Fig. 16-2 for details

Over-voltage category
III
According to IEC 60664-1 for altitudes up to 2000m

II
According to IEC 60664-1, for altitudes above 2000m

Degree of pollution
2
According to IEC 62477-1, not conductive

Vibration sinusoidal
2-17.8Hz: ±1.6mm; 17.8-500Hz: 2g
According to IEC 60068-2-6

Shock
2 hours / axis
According to IEC 60068-2-27

30g 6ms, 20g 11ms
3 bumps / direction, 18 bumps in total

Shock and vibration is tested in combination with DIN-Rails according to EN 60715 with a height of 15mm and a thickness of 1.3mm and standard orientation.

LABS compatibility
As a rule, only non-silicon precipitating materials are used. The unit conforms to the LABS criteria and is suitable for use in paint shops.

Corrosive gases
Tested according to ISA-71.04-1985, Severity Level G3 and IEC 60668-2-60 Test Ke Method 4 for a service life of minimum 10years in these environments.

Audible noise
Some audible noise may be emitted from the power supply during no load, overload or short circuit.
17. Safety and Protection Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Description</th>
</tr>
</thead>
</table>
| Isolation resistance | 500MΩ| 16.2Vdc | 0.1Ω | At delivered condition between input and output, measured with 500V_{dc}.
| | 500MΩ| 17Vdc | | At delivered condition between input and PE, measured with 500V_{dc}. |
| | 500MΩ| | | At delivered condition between output and PE, measured with 500V_{dc}. |
| | 500MΩ| | | At delivered condition between output and DC-OK contacts, measured with 500V_{dc}. |
| PE resistance | 0.1Ω | | | Resistance between PE terminal and the housing in the area of the DIN-rail mounting bracket. |
| Output over-voltage protection | 16.2Vdc | | 17Vdc | In case of an internal defect, a redundant circuit limits the maximum output voltage. The output shuts down and performs three restart attempts. If the failure continues, the output shuts down. Cycle input power to reset. |
| Class of protection | I | | | According to IEC 61140 and EN/IEC 60529. |
| Degree of protection | IP 20 | | | A PE (Protective Earth) connection is required. |
| Over-temperature protection | Included | | | Output shut-down with automatic restart. Temperature sensors are installed on critical components inside the unit and turn the unit off in safety critical situations, which can happen e.g. when ambient temperature is too high, ventilation is obstructed or the de-rating requirements are not followed. There is no correlation between the operating temperature and turn-off temperature since this is dependent on input voltage, load and installation methods. |
| Input transient protection | MOV (Metal Oxide Varistor) | | | For protection values see chapter 15 (EMC). |
| Internal input fuse | Included | | | Not user replaceable slow-blow high-braking capacity fuse. |
| Touch current (leakage current) | 0.10mA / 0.27mA | | | At 100Vac, 50Hz, TN-, TT-mains / IT-mains |
| | 0.13mA / 0.38mA | | | At 120Vac, 60Hz, TN-, TT-mains / IT-mains |
| | 0.20mA / 0.60mA | | | At 230Vac, 50Hz, TN-, TT-mains / IT-mains |
| | 0.13mA / 0.35mA | | | At 110Vac, 50Hz, TN-, TT-mains / IT-mains |
| | 0.17mA / 0.51mA | | | At 132Vac, 60Hz, TN-, TT-mains / IT-mains |
| | 0.27mA / 0.81mA | | | At 264Vac, 50Hz, TN-, TT-mains / IT-mains |

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
18. **Dielectric Strength**

The output voltage is floating and has no ohmic connection to the ground. The output is insulated to the input by a double or reinforced insulation.

Type and routine tests are conducted by the manufacturer. Field tests may be conducted in the field using the appropriate test equipment which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test. When testing, set the cut-off current settings to the value in the table below.

We recommend that either the + pole or the – pole shall be connected to the protective earth system. This helps to avoid situations in which a load starts unexpectedly or can not be switched off when unnoticed earth faults occur.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type test</td>
<td>60s</td>
<td>2500Vac</td>
<td>3000Vac</td>
<td>1000Vac</td>
</tr>
<tr>
<td>Routine test</td>
<td>5s</td>
<td>2500Vac</td>
<td>2500Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field test</td>
<td>5s</td>
<td>2000Vac</td>
<td>2000Vac</td>
<td>500Vac</td>
</tr>
<tr>
<td>Field tests cut-off</td>
<td></td>
<td>> 10mA</td>
<td>> 10mA</td>
<td>> 20mA</td>
</tr>
</tbody>
</table>

B)

When testing input to DC-OK ensure that the maximal voltage between DC-OK and the output is not exceeded (column D). We recommend connecting DC-OK pins and the output pins together when performing the test.
19. APPROVALS AND FULFILLED STANDARDS

IEC 61010
CB Scheme Certificate
IEC 61010-2-201 Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment

IEC 62368
CB Scheme Certificate
IEC 62368-1 Audio/video, information and communication technology equipment - Safety requirements
Output safety level: E51

UL 61010-2-201
(former UL 508)
planned
UL Certificate
Listed equipment for category NMTR - UL 61010-2-201 Electrical Equipment for Measurement, Control and Laboratory Use - Particular requirements for control equipment
Applicable for US and Canada
E-File: E198865

20. REGULATORY COMPLIANCE

CE
EU Declaration of Conformity
Trade conformity assessment for Europe
The CE mark indicates conformance with the European
- RoHS directive,
- EMC directive and the
- Low-voltage directive (LVD)

REACH Directive
Manufacturer's Statement
REACH ✔
EU-Regulation regarding the Registration, Evaluation, Authorisation and Restriction of Chemicals

WEEE Directive
Manufacturer's Statement
EU-Directive on Waste Electrical and Electronic Equipment

RoHS (China RoHS 2)
Manufacturer's Statement
Administrative Measures for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products
25 years

EAC
EAC Certificate
EAC EurAsian Conformity - Registration Russia, Kazakhstan and Belarus

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
21. Physical Dimensions and Weight

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>32mm</td>
<td>1.26''</td>
</tr>
<tr>
<td>Height</td>
<td>124mm</td>
<td>4.88''</td>
</tr>
<tr>
<td>Depth</td>
<td>102mm</td>
<td>4.02''</td>
</tr>
</tbody>
</table>

All dimensions in mm

The DIN-rail height must be added to the unit depth to calculate the total required installation depth.

- **Width**: 32mm (1.26'')
- **Height**: 124mm (4.88'')
- **Depth**: 102mm (4.02'')

- **Weight**: 440g (0.97lb)
- **DIN-Rail**: Use 35mm DIN-rails according to EN 60715 or EN 50022 with a height of 7.5 or 15mm.
- **Housing material**: Body: Aluminium alloy
 Cover: zinc-plated steel
- **Installation clearances**: See chapter 2
- **Penetration protection**: Small parts like screws, nuts, etc. with a diameter larger than 3.5mm

Fig. 21-1 **Front view**

Fig. 21-2 **Side view**
22. ACCESSORIES

22.1. ZM10.WALL – WALL/PANEL MOUNT BRACKET

This bracket is used to mount the devices on a wall/panel without utilizing a DIN-Rail. The bracket can be mounted without detaching the DIN-rail brackets.

Fig. 22-1 Isometric view

Fig. 22-2 Isometric view

Fig. 22-3 Isometric view

Fig. 22-4 Wall/panel mounting, front view

Fig. 22-5 Hole pattern for wall mounting

Fig. 22-6 Wall/panel mounting, side view

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
22.2. **YR20.242 - REDUNDANCY MODULE**

The YR20.242 is a dual redundancy module, which can be used to build 1+1 or N+1 redundant systems. The device is equipped with two input channels, each rated for 20A for ambient temperatures up to +70°C and are individually decoupled by utilizing MOSFET technology. The inputs can also be operated up to 24A when the ambient temperature does not exceed +45°C. The output can be loaded with nominal 20A at +70°C or 24A at 45°C continuous current. Using MOSFETs instead of diodes reduces heat generation, losses and voltage drop between input and output. Due to these advantages, the unit is very narrow and only requires 32mm width on the DIN-rail.

The device does not require an additional auxiliary voltage and is self-powered even in case of a short circuit across the output.

See chapter 23.5 for wiring information.
23. APPLICATION NOTES

23.1. PEAK CURRENT CAPABILITY

The unit can deliver peak currents (up to several milliseconds) which are higher than the specified short term currents. This helps to start current demanding loads. Solenoids, contactors and pneumatic modules often have a steady state coil and a pick-up coil. The inrush current demand of the pick-up coil is several times higher than the steady-state current and usually exceeds the nominal output current. The same situation applies when starting a capacitive load.

The peak current capability also ensures the safe operation of subsequent circuit breakers of load circuits. The load branches are often individually protected with circuit breakers or fuses. In case of a short or an overload in one branch circuit, the fuse or circuit breaker need a certain amount of over-current to open in a timely manner. This avoids voltage loss in adjacent circuits.

The extra current (peak current) is supplied by the power converter and the built-in large sized output capacitors of the power supply. The capacitors get discharged during such an event, which causes a voltage dip on the output. The following two examples show typical voltage dips for resistive loads:

Fig. 23-1 20A peak current for 50ms, typ. (2x the nominal current)

- **Output Voltage:** 12V
- **Output Current:** 0A
- **10ms/DIV**

Fig. 23-2 50A peak current for 5ms, typ. (5x the nominal current)

- **Output Voltage:** 12V
- **Output Current:** 0A
- **1ms/DIV**

Fig. 23-3 30A peak current for 12ms, typ. (3x the nominal current)

- **Output Voltage:** 12V
- **Output Current:** 0A
- **10ms/DIV**

Please note: The DC-OK relay triggers when the voltage dips more than 10% for longer than 1ms.

Peak current voltage dips

- Typically from 12V to 5.9V
- Typically from 12V to 6V
- Typically from 12V to 5.6V

- At 20A for 50ms, resistive load
- At 50A for 2ms, resistive load
- At 50A for 5ms, resistive load

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.
23.2. Charging of Batteries

The power supply can be used to charge lead-acid or maintenance free VRLA batteries.

Instructions for charging batteries:

a) Ensure that the ambient temperature of the power supply stays below 40°C.
b) Use a 15A or 16A circuit breaker or a blocking diode between the power supply and the battery.
c) Ensure that the output current of the power supply is below the allowed charging current of the battery.
d) The return current to the power supply is typically 8mA. This return current can discharge the battery when the power supply is switched off except in case a blocking diode is utilized.
e) Set the output voltage, measured at no load and at the battery end of the cable, very precisely to the end-of-charge voltage. The voltage should be set to 13.9V at 10°C, 13.75V at 20°C, 13.6V at 30°C and 13.4V at 40°C ambient temperature.

23.3. Series Operation

Devices of the same type can be connected in series for higher output voltages. It is possible to connect as many units in series as needed, providing the sum of the output voltage does not exceed 150Vdc. Voltages with a potential above 60Vdc must be installed with a protection against touching.

Avoid return voltage (e.g. from a decelerating motor or battery) which is applied to the output terminals.

Keep an installation clearance of 15mm (left / right) between two power supplies and avoid installing the power supplies on top of each other. Do not use power supplies in series in mounting orientations other than the standard mounting orientation.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

23.4. Parallel Use to Increase Output Power

Devices can be paralleled to increase the output power. The output voltage shall be adjusted to the same value (±100mV) with the same load conditions on all devices, or the devices can be left with the factory settings.

The ambient temperature is not allowed to exceed +40°C.

If more than three devices are connected in parallel, a fuse or circuit breaker with a rating of 15A or 16A is required on each output. Alternatively, a diode or redundancy module can also be utilized.

Energize all devices at the same time. It also might be necessary to cycle the input power (turn-off for at least five seconds), if the output was in overload or short circuits and the required output current is higher than the current of one unit.

Keep an installation clearance of 15mm (left / right) between two devices and avoid installing devices on top of each other. Do not use devices in parallel in mounting orientations other than the standard mounting orientation or in any other condition where a reduction of the output current is required (e.g. altitude).

Pay attention that leakage current, EMI, inrush current will increase when using multiple devices.
23.5. Parallel Use for Redundancy

1+1 Redundancy:
Devices can be paralleled for redundancy to gain higher system availability. Redundant systems require a certain amount of extra power to support the load in case one device fails. The simplest way is to put two devices in parallel. This is called a 1+1 redundancy. In case one device fails, the other one is automatically able to support the load current without any interruption. It is essential to use a redundancy module to decouple devices from each other. This prevents that the defective unit becomes a load for the other device and the output voltage cannot be maintained any more.

1+1 redundancy allows ambient temperatures up to +70°C.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

Recommendations for building redundant power systems:
- Use separate input fuses for each device.
- Use separate mains systems for each device whenever it is possible.
- Monitor the individual devices. Therefore, use the DC-OK signal of the device.
- It is desirable to set the output voltages of all devices to the same value (± 100mV) or leave it at the factory setting.

N+1 Redundancy:
Redundant systems for a higher power demand are usually built in a N+1 method. E.g. four devices, each rated for 10A are paralleled to build a 30A redundant system.

Pay attention that leakage current, EMI, inrush current, harmonics will increase when using multiple devices.

Keep an installation clearance of 15mm (left / right) between two devices and avoid installing the devices on top of each other.

Do not use devices in parallel in mounting orientations other than the standard mounting orientation or in any other condition, where a reduction of the output current is required.

For N+1 redundancy the ambient temperature is not allowed to exceed +40°C.

Wiring examples:

![Wiring Diagram 1+1 Redundant Configuration for 10A Load Current with a Dual Redundancy Module]

![Wiring Diagram N+1 Redundant Configuration for 30A Load Current with Multiple Power Supplies and Redundancy Modules]
23.6. Operation on Two Phases

The power supply can also be used on two-phases of a three-phase-system. Such a phase-to-phase connection is allowed as long as the supplying voltage is below 240V+10%.

Ensure that the wire, which is connected to the N-terminal, is appropriately fused.

The maximum allowed voltage between a Phase and the PE must be below 300Vac.

23.7. Use in a Tightly Sealed Enclosure

When the device is installed in a tightly sealed enclosure, the temperature inside the enclosure will be higher than outside. In such situations, the inside temperature defines the ambient temperature for the device.

In the following test setup, the device is placed in the middle of the box, no other heat producing items are inside the box. The load is placed outside the box.

The temperature sensor inside the box is placed in the middle of the right side of the power supply with a distance of 1cm.

The following measurement results can be used as a reference to estimate the temperature rise inside the enclosure.

<table>
<thead>
<tr>
<th>Case</th>
<th>Enclosure size</th>
<th>Input voltage</th>
<th>Load</th>
<th>Temperature inside the box</th>
<th>Temperature outside the box</th>
<th>Temperature rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>230Vac</td>
<td>12V, 8A; (≈80%)</td>
<td>40.7°C</td>
<td>27.9°C</td>
<td>12.8K</td>
</tr>
<tr>
<td>B</td>
<td>110x180x165mm Rittal Typ IP66 Box PK 9516 100, plastic</td>
<td>230Vac</td>
<td>12V, 10A; (≈100%)</td>
<td>43.2°C</td>
<td>28.0°C</td>
<td>15.2K</td>
</tr>
</tbody>
</table>
23.8. MOUNTING ORIENTATIONS

Mounting orientations other than input terminals on the bottom and output on the top require a reduction in continuous output power or a limitation in the maximum allowed ambient temperature.

The listed lifetime and MTBF values from this datasheet apply only for the standard mounting orientation. The following curves give an indication for allowed output currents for altitudes up to 2000m (6560ft).

Fig. 23-6
Mounting Orientation A
(Standard orientation)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+45°C</td>
<td>7.5A</td>
</tr>
<tr>
<td>+60°C</td>
<td>10A</td>
</tr>
<tr>
<td>+70°C</td>
<td>12A</td>
</tr>
</tbody>
</table>

Fig. 23-7
Mounting Orientation B
(Upside down)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+30°C</td>
<td>7.5A</td>
</tr>
<tr>
<td>+60°C</td>
<td>12A</td>
</tr>
</tbody>
</table>

Fig. 23-8
Mounting Orientation C
(Table-top mounting)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25°C</td>
<td>6.5A</td>
</tr>
<tr>
<td>+60°C</td>
<td>12A</td>
</tr>
</tbody>
</table>

Fig. 23-9
Mounting Orientation D
(Horizontal cw)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25°C</td>
<td>6.5A</td>
</tr>
<tr>
<td>+60°C</td>
<td>12A</td>
</tr>
</tbody>
</table>

Fig. 23-10
Mounting Orientation E
(Horizontal ccw)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+25°C</td>
<td>6.5A</td>
</tr>
</tbody>
</table>

Jul. 2019 / Rev. 1.0 DS-CP5.121-EN All values are typical figures specified at 230Vac, 50Hz input voltage, 12V 10A output load, 25°C ambient and after a 5 minutes run-in time unless otherwise noted.